首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20310篇
  免费   760篇
  国内免费   241篇
  2023年   72篇
  2022年   143篇
  2021年   213篇
  2020年   157篇
  2019年   219篇
  2018年   282篇
  2017年   180篇
  2016年   203篇
  2015年   580篇
  2014年   1590篇
  2013年   1505篇
  2012年   1575篇
  2011年   2228篇
  2010年   1959篇
  2009年   907篇
  2008年   919篇
  2007年   828篇
  2006年   803篇
  2005年   718篇
  2004年   686篇
  2003年   645篇
  2002年   464篇
  2001年   234篇
  2000年   237篇
  1999年   292篇
  1998年   301篇
  1997年   284篇
  1996年   230篇
  1995年   315篇
  1994年   289篇
  1993年   238篇
  1992年   216篇
  1991年   178篇
  1990年   142篇
  1989年   160篇
  1988年   127篇
  1987年   121篇
  1986年   92篇
  1985年   138篇
  1984年   175篇
  1983年   151篇
  1982年   157篇
  1981年   78篇
  1980年   106篇
  1979年   74篇
  1978年   26篇
  1977年   25篇
  1976年   17篇
  1973年   8篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Jianxing Song 《FEBS letters》2009,583(6):953-3132
Many proteins are not refoldable and also insoluble. Previously no general method was available to solubilize them and consequently their structural properties remained unknown. Surprisingly, we recently discovered that all insoluble proteins in our laboratory, which are highly diverse, can be solubilized in pure water. Structural characterization by CD and NMR led to their classification into three groups, all of which appear trapped in the highly disordered or partially-folded states with a substantial exposure of hydrophobic side chains. In this review, I discuss our results in a wide context and subsequently propose a model to rationalize the discovery. The potential applications are also explored in studying protein folding, design and membrane proteins.  相似文献   
22.
Although several p53–Mdm2-binding disruptors have been identified to date, few studies have been published on p53–Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200–300 selectively inhibited the p53–Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53–Mdmx interaction over the p53–Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53–Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days.  相似文献   
23.
Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B.  相似文献   
24.
The effect of the antibiotics thiostrepton and micrococcin on EF-Tu-catalyzed (ribosome-dependent) GTP hydrolysis in the presence of A-Phe, C-A-Phe, or C-C-A-Phe (related to the sequence of the 3′-terminus of aminoacyl-tRNA)(System I) or by methanol (‘uncoupled GTPase’, System II) was investigated. In System I, thiostrepton increases the binding affinities of the effectors to the EF-Tu·GTP·70 S ribosome complex, as well as the extent of the GTP hydrolysis, while the KGTPm is virtually unchanged. Similarly, in the uncoupled system (System II) and in the absence of effectors, thiostrepton significantly increases VGTPmax, whereas KGTPm remains unaffected. Micrococcin is without any effect in both systems. The ‘uncoupled GTPase’ (in System II) is also strongly inhibited by C-A-Phe. The results indicate the crucial role of the EF-Tu site which binds the aminoacylated C-C-A terminus of aminoacyl-tRNA in promoting GTP hydrolysis. It follows that the binding of the model effectors (such as C-C-A-Phe) to that site is favorably influenced by the interaction of thiostrepton with the 50 S ribosomal subunit, whereas thiostrepton, per se, does not influence the affinity of EF-Tu for GTP.  相似文献   
25.
Bile acid deficiency is a serious syndrome in newborns that can result in death if untreated. 5β-Reductase deficiency is one form of bile acid deficiency and is characterized by dramatically decreased levels of physiologically active 5β-reduced bile acids. AKR1D1 (aldo-keto reductase 1D1) is the only known human enzyme that stereo-specifically reduces the Δ4 double bond in 3-keto steroids and sterols to yield the 5β-hydrogenated product. Analysis of the AKR1D1 gene in five patients with 5β-reductase deficiency revealed five different mutations resulting in an amino acid substitution in the protein. To investigate a causal role for these observed point mutations in AKR1D1 in 5β-reductase deficiency, we characterized their effect on enzymatic properties. Attempts to purify mutant enzymes by overexpression in Escherichia coli only yielded sufficient amounts of the P133R mutant for further characterization. This enzyme displayed a highly reduced Km and Vmax reminiscent of uncompetitive kinetics with 4-cholesten-7α-ol-3-one as substrate. In addition, this mutant displayed no change in cofactor affinity but was more thermolabile in the absence of NADPH as judged by CD spectroscopy. All mutants were compared following expression in HEK 293 cells. Although these enzymes were equally expressed based on mRNA levels, protein expression and functional activity were dramatically reduced. Cycloheximide treatment also revealed that several of the expressed mutants were less stable. Our findings show that the reported mutations in AKR1D1 in patients with 5β-reductase lead to significantly decreased levels of active enzyme and could be causal in the development of bile acid deficiency syndrome.  相似文献   
26.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   
27.
L-DOPA had no effect on the endogenous phosphorylation of proteins after extraction with 1% Triton X-100 from hamster melanoma. When proteins were purified further by wheat germ-agglutinin chromatography, however, a dramatic and dose-dependent inhibitory effect of DOPA on glycoprotein phosphorylation was observed in the presence of Mn +2.  相似文献   
28.
Abstract Cell contents of Clostridium sphenoides , labeled with [32P]orthophosphate under strict anaerobic conditions, were analyzed by two-dimensional gel electrophoresis. Autoradiography of these gels demonstrated the presence of at least 15 32P-labeled protein species, of which M r and iso-electric point were determined. Treatment of the radioactively labeled cell contents with alkaline phosphatase and acid phosphatase showed that all these proteins were modified by phosphorylation. These findings demonstrate for the first time the presence of phosphorproteins in a strictly anaerobic bacterium.  相似文献   
29.
Synaptic membranes were incubated with [gamma-32P]ATP, and glycoproteins were isolated by affinity chromatography on concanavalin A agarose. Glycoproteins accounted for 1.5-2.5% of the total 32P incorporated into synaptic membrane proteins. Ca2+ and calmodulin enhanced the phosphorylation of synaptic membrane glycoproteins approximately threefold. In the presence of Ca2+ and calmodulin, the rate of glycoprotein dephosphorylation was also increased three- to four-fold. Gel electrophoretic analysis identified several synaptic membrane glycoproteins that incorporated 32P, with the most highly labeled glycoprotein under basal phosphorylating conditions having an apparent Mr of 205,000 (gpiii). Ca2+ and calmodulin produced a marked increase in the phosphorylation of a glycoprotein with an apparent Mr of 180,000 (gpiv) and lesser increases in the labeling of three other glycoproteins. Membranes that had been labeled with [gamma-32P]ATP were extracted with Triton X-100 under conditions that yield a detergent-insoluble residue enriched in postsynaptic structures. The Triton X-100 insoluble residue accounted for 20-25% of the 32P associated with synaptic membrane glycoproteins. Gpiv and other glycoproteins, the phosphorylation of which was stimulated by calmodulin, were located exclusively in the Triton X-100 insoluble residue, whereas gpiii and other calmodulin-insensitive glycoproteins partitioned predominantly into the Triton X-100-soluble fraction. Phosphopeptide maps and phosphoamino acid analysis of gpiv isolated from synaptic membranes and a postsynaptic glycoprotein of apparent Mr of 180,000 (gp180) isolated from synaptic junctions indicated that the former protein was identical to the previously identified postsynaptic-specific gp180. In addition to phosphoserine and phosphothreonine, gpiv also contained phosphotyrosine, identifying it as a substrate for tyrosine-protein kinase as well as for Ca2+/calmodulin-dependent protein kinase.  相似文献   
30.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号